Logs and Exponentials MORE PRACTICE: Basic Exponential Equations

Label the following functions as exponential growth or decay.

1.
$$y = 7(2)^x$$
 growth

2.
$$y = 3(0.4)^x$$
 decay

3.
$$y = 9(\frac{1}{2})^{-x}$$

4. Write an exponential function that goes through (0, 2) and (3, 20).

$$y = ab^x \implies at (0, 2), \quad y = 2 = a \cdot b^0 = a \cdot 1 = a \quad \text{so } y = 2b^x$$

$$\rightarrow$$
 at (3, 20), $y = 20 = 2 \cdot b^3 \rightarrow 10 = b^3 \rightarrow b = \sqrt[3]{10} = 2.15$ So $y = 2(2.15)^x$

So
$$y = 2(2.15)^x$$

5. Write an exponential function that goes through (0, 6) and (5, 15).

$$y = ab^x \implies at (0, 6), \quad y = 6 = a \cdot b^0 = a \cdot 1 = a \quad so \ y = 6b^x$$

⇒ at (5, 15),
$$y = 15 = 6 \cdot b^5$$
 ⇒ $2.5 = b^5$ ⇒ $b = \sqrt[5]{2.5} = 1.20$ So $y = 2.5(1.20)^x$

So
$$y = 2.5(1.20)^x$$

6. A water balloon explodes near your head. It starts out with a 2 inch diameter. As it blows up, the diameter of the water splash doubles every second. Write an equation that models this situation. What is the diameter of the splash in 5 seconds?

$$y = ab^x \rightarrow a = initial value = 2$$
, b = growth factor = 2 (doubles), so $y = 2 \cdot 2^x$

When
$$x = 5$$
, $y = 2 \cdot 2^5 = 2 \cdot 32 = 64$ inches

7. The population of rabbits in a nature preserve was 15 in 2000. The population grew exponentially to 645 in 2010. Write an equation that models the situation. What will the population be in 2020?

 $y = ab^t \implies$ let the year 2000 be the initial time (t = 0), so a = 15 so $y = 15b^t$

The year 2010 corresponds to t = 10, $y = 645 = 15 \cdot b^{10} \Rightarrow 43 = b^{10} \Rightarrow b = \sqrt[10]{43} = 1.46$ So = $15(1.46)^x$. The year 2020 corresponds to t = 20, so $y = 15(1.46)^{20} = 29,050$